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Off-diagonal long-range order in a supersymmetric integrable
model of correlated electrons?
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Abstract. A new model for correlated electrons is presented which is integrable in one-dimension. The
symmetry algebra of the model is the Lie superalgebra gl(2|1) which depends on a continuous free param-
eter. This symmetry algebra contains the η pairing algebra as a subalgebra which is used to show that the
model exhibits Off-Diagonal Long-Range Order in any number of dimensions.

PACS. 75.10.Jm Quantized spin models – 71.27.+a Strongly correlated electron systems; heavy fermions

The study of correlated electron models has attracted
great interest largely motivated by the aim to understand
high-Tc superconductivity. In a paper of Bariev, Klümper
and Zittartz [1], a new model of correlated electrons was
given which generalizes the Hubbard model with the in-
troduction of correlated hopping and pair hopping terms.
This model also generalized the supersymmetric U model
given in [2] through the introduction of a spin anisotropy
parameter.

Electrons on a lattice are described by canonical Fermi

operators ci,σ and c†i,σ satisfying the anti-commutation re-
lations given by

{c†i,σ, cj,τ} = δijδστ ,

where i, j = 1, 2, · · · , L label the sites of the lattice and
σ, τ =↑, ↓. The operator ci,σ annihilates an electron of
spin σ at site i, which implies that the Fock vacuum |0〉
satisfies ci,σ |0〉 = 0. At a given lattice site i there are four
possible electronic states:

|0〉 , |↑〉i = c†i,↑ |0〉 , |↓〉i = c†i,↓ |0〉 , |↑↓〉i = c†i,↓c
†
i,↑ |0〉 .

(1)

By ni,σ = c†i,σci,σ we denote the number operator for elec-
trons with spin σ on site i, and we write ni = ni,↑ + ni,↓.
The local spin operators are as follows:

S†i = c†i,↑ci,↓, Si = c†i,↓ci,↑, S
z
i = 1/2(ni,↑ − ni,↓). (2)
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The Hamiltonian of the model as given in [1] reads

H = −
∑
j,σ

(c†jσcj+1σ + h.c.) exp

[
−

1

2
(η − σγ)nj,−σ

−
1

2
(η + σγ)nj+1,−σ

]
+
∑
j

[
Unj↑nj↓ + t(c†j↑c

†
j↓cj+1↓cj+1↑ + h.c.)

]
, (3)

where j denotes the sites. This model with periodic bound-
ary conditions was also solved by the co-ordinate Bethe
ansatz under the constraint

t =
U

2
= ε

[
2e−η(cosh η − cosh γ)

] 1
2 , ε = ±1, (4)

leaving two free parameters η, γ. It was subsequently
shown [3] that this model, with the addition of an
appropriate chemical potential term, could be derived
from a Uq(gl(2|1)) invariant R-matrix which satisfies the
Yang-Baxter equation, thus establishing integrability of
the model by virtue of the Quantum Inverse Scattering
Method (QISM) (for example, see [4]). The free param-
eters η, γ are functions of the deformation parameter q
and the continuous parameter labelling the inequivalent
four-dimensional typical representations of Uq(gl(2|1)).

An important concept in the theory of high-Tc super-
conductivity is that of Off-Diagonal Long-Range Order
(ODLRO), orginally introduced by Yang [5] who showed
that it was a necessary feature of systems which exhibit
superconducting states. An elegant method of construct-
ing states with ODLRO is through the use of the η pairing
realization of the Lie algebra sl(2). Already this technique
has been applied to a variety of models [6–10]. Our inten-
tion here is to propose a new model of correlated electrons
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from the aforementionedR-matrix with the η pairing sym-
metry and to show that states with ODLRO do exist. We
work in the isotropic case (q = 1), otherwise we would
necessarily need to adopt a q deformation of the η pairing
algebra. Also it is known that quantum superalgebra in-
variance is broken by the imposition of periodic boundary
conditions but is restored as q → 1. Here we choose a new
realization of the abstract model used to verify integrabil-
ity of the Hamiltonian (3). The spectra of this new model
and the isotropic limit of (3) are identical since both are
derived from the same solution of the Yang-Baxter equa-
tion. However the physics of these two models is different
in terms of their correlation functions since the creation
and annihilation operators for electrons are represented
by different matrices in each case. Importantly, for the
present model a simple study of the off-diagonal elements
of the reduced density matrix indicates ODLRO.

The local Hamiltonian for the new model is derived
below and has the following form:

hij(α) =

[
−(α+1)(c†i,↑cj,↑+c

†
j,↑ci,↑)

(
α

α+1

) 1
2 (ni,↓+nj,↓)

+ α(c†i,↓cj,↓ + c†j,↓ci,↓)

(
α+ 1

α

) 1
2 (ni,↑+nj,↑)

− (ni,↑ni,↓ + nj,↑nj,↓)− α(ni,↓ + nj,↓)

+ (α+ 1)(ni,↑ + nj,↑) + S†i Sj + SiS
†
j

]
(5)

where i, j denote nearest neighour sites on the lattice.
Above we adopt the convention 0 ≤ arg z1/2 < π for any
complex parameter z. Here α is a free parameter which
we will restrict to being real.

The Hamiltonian describes correlated hopping pro-
cesses, a Hubbard on-site interaction, chemical potential
and an XY spin interaction. The energies are given by

E = α

N∑
j=1

1

µ2
j + 1/4

− 2αL

corresponding to a solution of the Bethe ansatz equations
[1,11–14] [

µj −
i
2

µj + i
2

]L
=

M∏
k=1

µj − λk −
i

2(α+1)

µj − λk + i
2(α+1)

,

j = 1...N,

N∏
j=1

λk − µj −
i

2(α+1)

λk − µj + i
2(α+1)

= −
M∏
β=1

λk − λβ −
i

(α+1)

λk − λβ + i
(α+1)

,

k = 1, ...,M.

In the above L is the length of the system, M is the num-
ber of spin up electrons andN = L+2Sz. We mention that
an alternative set of Bethe ansatz equations and expres-
sions for the energies have recently been obtained in [15].

The eigenstates corresponding to solutions of the
above Bethe ansatz do not provide a complete set of states

for the model. However each gives the lowest weight state
for a gl(2|1) multiplet allowing additional states to be ob-
tained through the action of the gl(2|1) generators. The
method used to show this is analogous to that used for
the t−J model in [16]. Note under spin reflection we have
h(α)→ h(−α− 1) so that α can be interpreted as a mea-
sure of the spin anisotropy coupling of the model. We do
not include the isotropic case α = −1/2 here since taking
the limit is non-trivial. A Bethe ansatz solution of this
case has been studied in [17].

We denote the generators of gl(2|1) by Eβγ , β, γ =
1, 2, 3 with grading [1] = [2] = 0, [3] = 1. In the typical
4-dimensional representation of gl(2|1), the highest weight
itself of the representation depends on a free parameter α,
thus giving rise to a one-parameter family of inequivalent
irreps [18]. Choose the following basis

|4〉 =

 0
0
0
1

 , |3〉 =

0
0
1
0

 ,

|2〉 =

 0
1
0
0

 , |1〉 =

1
0
0
0

 (6)

with |1〉 , |4〉 even and |2〉 , |3〉 odd. Then in this typical
4-dimensional representation, Eβγ are 4× 4 supermatrices
of the form

E1
2 = |2〉 〈3| ,

E2
1 = |3〉 〈2| ,

E1
1 = − |3〉 〈3| − |4〉 〈4| ,

E2
2 = − |2〉 〈2| − |4〉 〈4| ,

E2
3 =
√
α |1〉 〈2|+

√
α+ 1 |3〉 〈4| ,

E3
2 =
√
α |2〉 〈1|+

√
α+ 1 |4〉 〈3| ,

E1
3 = −

√
α |1〉 〈3|+

√
α+ 1 |2〉 〈4| ,

E3
1 = −

√
α |3〉 〈1|+

√
α+ 1 |4〉 〈2| ,

E3
3 = α |1〉 〈1|+ (α+ 1) (|2〉 〈2|+ |3〉 〈3|)

+ (α+ 2) |4〉 〈4| . (7)

For the case 0 > α > −1, the above representation
equation (7) is grade-star [19]. Consequently the Hamil-
tonian equation (5) is not Hermitian but rather exhibits
grade star Hermiticity. For other real values of α the
Hamiltonian is Hermitian in the usual sense. For the ten-
sor product decomposition we have (α 6= 0,−1/2,−1)
V ⊗ V = V1 ⊕ V2 ⊕ V3, where V1, V2 and V3 are gl(2|1)-
modules with highest weights (0, 0|2α), (0,−1|2α+1), and
(−1,−1|2α+ 2).

The rational Ř(θ) ∈ End(V ⊗V ) matrix satisfying the
supersymmetric Yang-Baxter equation

[I ⊗ Ř(θ)][Ř(θ + θ′)⊗ I][I ⊗ Ř(θ′)] =

[Ř(θ′)⊗ I][I ⊗ Ř(θ + θ′)][Ř(θ) ⊗ I], (8)
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is given by [20]

Ř(θ) = −
θ − 2α

θ + 2α
P1 + P2 −

θ + 2α+ 2

θ − 2α− 2
P3 (9)

where Pk, k = 1, 2, 3, are projection operators from V ⊗V
onto Vk. Throughout the multiplication rule for the tensor
product is defined by

(a⊗ b)(c⊗ d) = (−1)[b][c] (ac⊗ bd) (10)

for homogeneous elements a, b, c and d.
The projectors Pk can easily be evaluated:

P1 =
∣∣Ψ1

1

〉 〈
Ψ1

1

∣∣+
∣∣Ψ1

2

〉 〈
Ψ1

2

∣∣
+
∣∣Ψ1

3

〉 〈
Ψ1

3

∣∣+
∣∣Ψ1

4

〉 〈
Ψ1

4

∣∣ ,
P3 =

∣∣Ψ3
1

〉 〈
Ψ3

1

∣∣+
∣∣Ψ3

2

〉 〈
Ψ3

2

∣∣
+
∣∣Ψ3

3

〉 〈
Ψ3

3

∣∣+
∣∣Ψ3

4

〉 〈
Ψ3

4

∣∣ ,
P2 = I − P1 − P3 (11)

where
∣∣Ψ1
k

〉
and

∣∣Ψ3
k

〉
, k = 1, 2, 3, 4, form the symmetry

adapted bases for the spaces V1 and V3, respectively. Note
that Ř(0) ≡ I. We now compute

∣∣Ψ1
k

〉
and

∣∣Ψ3
k

〉
, k =

1, 2, 3, 4. By means of the matrix representation (equa-
tion (7)), one can show∣∣Ψ1

1

〉
= |1〉 ⊗ |1〉 ,∣∣Ψ1

2

〉
=

1
√

2
(|2〉 ⊗ |1〉+ |1〉 ⊗ |2〉),∣∣Ψ1

3

〉
=

1
√

2
(|3〉 ⊗ |1〉+ |1〉 ⊗ |3〉),∣∣Ψ1

4

〉
=

1√
2(2α+ 1)

[
√
α+ 1(|4〉 ⊗ |1〉+ |1〉 ⊗ |4〉)

+
√
α(|2〉 ⊗ |3〉 − |3〉 ⊗ |2〉)],∣∣Ψ3

1

〉
=

1√
2(2α+ 1)

[
√
α(|4〉 ⊗ |1〉+ |1〉 ⊗ |4〉)

+
√
α+ 1(− |2〉 ⊗ |3〉+ |3〉 ⊗ |2〉)],∣∣Ψ3

2

〉
=

1
√

2
(|2〉 ⊗ |4〉+ |4〉 ⊗ |2〉),∣∣Ψ3

3

〉
=

1
√

2
(|3〉 ⊗ |4〉+ |4〉 ⊗ |3〉),∣∣Ψ3

4

〉
= |4〉 ⊗ |4〉 (12)

with the dual basis elements defined by〈
Ψ1
k

∣∣ =
(∣∣Ψ1

k

〉)†
,

〈
Ψ3
k

∣∣ =
(∣∣Ψ3

k

〉)†
, k = 1, 2, 3, 4,

(|β〉 ⊗ |γ〉)† = (|β〉)† ⊗ (|γ〉)†, 0 > α > −1

(|β〉 ⊗ |γ〉)† = (−1)[β][γ](|β〉)† ⊗ (|γ〉)†,

α > 0, α < −1

(|β〉)† = 〈β| , ∀β = 1, 2, 3, 4. (13)

Here [β] stands for the grading of the state |β〉: [β] = 0
for even |β〉 and [β] = 1 for odd |β〉.

We may define the local Hamiltonian [4]

h(α)=− 2α(α+1)
d

dθ
Ř(θ)

∣∣∣∣
θ=0

=2(α+ 1)P1−2αP3. (14)

We remark that for α = −1/2 the form equation (14) is no
longer valid [17]. A realization of this local Hamiltonian
by choosing

|1〉 ≡ |↑〉 , |2〉 ≡ |↑↓〉 , |3〉 ≡ |0〉 , |4〉 ≡ |↓〉 (15)

yields the local Hamiltonian equation (5). Choosing the
alternative realization

|1〉 ≡ |↑↓〉 , |2〉 ≡ |↓〉 , |3〉 ≡ |↑〉 , |4〉 ≡ |0〉 (16)

yields the isotropic limit of (3) with

exp γ = 1, exp(−η) =
α+ 1

α

and the chemical potential term

2
∑
j

(nj↑ + nj↓).

The new Hamiltonian (5) is thus obtained from (3) by the
unitary transformation

c↑ → c†↓(1− 2n↑)

c↓ → c↑(1− 2n↓)

It is easy to verify that H |0〉 = 0 where |0〉 denotes the
vacuum state. By construction, we know that the Hamil-
tonian has gl(2|1) invariance and moreover the sl(2) sub-
algebra is represented by the η pair realization; viz

η =
L∑
j=1

cj,↑cj,↓, η† =
L∑
j=1

c†j,↓c
†
j,↑,

ηz =
L∑
j=1

1

2
(nj − 1). (17)

Thus the 2N electron states

|ΨN 〉 = (η†)N |0〉 (18)

are eigenstates of the global Hamiltonian with zero energy.
These states are well known to possess ODLRO; that is

lim
|l−j|→∞

〈ΨN | c
†
j,↓c
†
j,↑cl,↑cl,↓ |ΨN 〉

〈ΨN |ΨN 〉
=
N

L

(
1−

N

L

)
(19)

in the thermodynamic limit (N,L → ∞, N/L fixed)
in any number of dimensions [10]. In one dimension,
these eigenstates belong to the multiplet generated by the
gl(2|1) lowest weight state corresponding to the solution
of the Bethe ansatz equations with N = L − 1, M = 0
and

µk =
1

2
cot(

πk

L
), k = 1, ...., L− 1.
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The Hermitian regions α > 0 and α < −1 have ground
state energies −2Lα and 2L(α+1) respectively which fol-
lows from the action of the Hamiltonian on the completely
ferromagnetic reference states and the fact that

E ≥ LE0

where E0 is the minimum energy of the two-site Hamilto-
nian. Here it is clear that the 2N electron states (18) do
not belong to the ground state multiplet. On the other
hand for 0 > α > −1, which is the region of small
spin anisotropic coupling, the states (18) do occur in the
ground state at least for small lattices and generic values
of α. Unfortunately technical difficulties arise in extending
this result to the thermodynamic limit due to the grade
Hermitian nature of the Hamiltonian. New mathematical
methods need to be developed in order to understand the
behaviour for these values of α in the infinite limit, which
are currently under investigation.
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